You are here

Model examines nanotoxicity in different ionic strength media

Because of the widespread use of silver nanoparticles (AgNPs) in anti-microbial consumer products there are growing concerns regarding exposure to these materials and potential risks to humans and wildlife. Despite a large number of experiments, the toxicity of AgNPs is still largely unknown. This is partly because of the fact that AgNPs agglomerate differently depending on the media in which they are found, which makes it difficult to assess the inherent toxicity of these nanostructures.

SNNI researcher, Robert Tanguay, investigated size- and surface coating-dependent toxicity of AgNPs while also controlling particle agglomeration. They exposed embryonic zebrafish to AgNPs that were 20 and 110 nm in size coated with either polypyrrolidone (PVP) or citrate surface coatings. The zebrafish were placed in media of varying ionic strength in either standard zebrafish embryo medium, a calcium chloride solution (CaCl2) or ultrapure water (UP). The AgNPs were synthesized by nanoComposix (San Diego, CA) and have been selected by the Nanotechnology Health Implications Research (NCNHIR) Consortium to address the increasing health and safety concerns of AgNPs via an interdisciplinary programme.

Zebrafish embryos can develop quite normally in a broad range of ionic strength media ranging from high (EM) to low (CaCl2 and UP). In this study, they found that AgNPs suspended in UP and CaCl2were more toxic to the zebrafish embryos than were the AgNP suspensions prepared in EM. The AgNPs suspended in lower ionic strength media remained stable and well dispersed and were more readily taken up the embryos. In contrast, the AgNPs suspended in higher ionic strength solutions rapidly agglomerated, which meant that they were less readily taken up. They also found that 20 nm sized AgNPs were more toxic than the 110 nm sized ones, and that the PVP coated AgNPs were more toxic than the citrate coated material for the same particle core size. The amount of silver found in the embryonic tissue correlated well with observed toxicity, but only for those solutions in which the AgNPs were well dispersed.

This group's results provide a novel in vivo whole animal approach to evaluate the toxicity of engineered nanoparticles. They conclude that attempts to accurately identify nanoparticle hazard must take into consideration how the environment alters particle properties.

Souce: Nanotech Lab talk

Link to the paper in Nanotechnology

^ Back to Top